Lecture 27:
Where to Go from Here

Announcements

 Problem Set 9 was due thirty minutes ago.
» Solutions will go online Monday at 1:00PM.

Congratulations - you're done
with CS103 problem sets!

 Take a minute to reflect on how much you’ve
learned! Look back at PS1. Those problems
seem a lot easier now, don’t they?

A Fun Historical Note

* The results you've seen presented in CS103
were not discovered in the order you may have
expected.

* For example:

- Regular languages were developed after Turing
machines.

- Cantor had worked out different orders of infinity
before the U and N symbols were invented.

* Check out the “Timeline of CS103 Results” on
the course website for more information!

Please evaluate this course on Axess.
Your feedback really makes a difference.

Final Exam Logistics

* Our final exam is on Wednesday, December 10"
from 3:30PM - 6:30PM.

 Locations are now available on the course website; check
your seat assignment ASAP and write it down somewhere
easily accessible.

 The final exam is cumulative and covers topics from
PS1 - PS9 and LOO - L26. The format is similar to that
of the midterm, with a mix of short-answer questions
and formal written proofs.

» Like the midterms, it’s closed-book, closed-computer,
and limited-note. You can bring one double-sided
8.5” X 11” notes sheet with you.

* Best of luck - you can do this!

Preparing for the Final Exam

» Kaia is running a review session today from
4:30PM - 5:30PM in Thornton 102.

« We’ve posted a gigantic compendium of CS103
practice problems on the course website.

* You can search for problems based on the topics
they cover, whether solutions are available,
whether they’'re ones we particularly like, and
whether they were used on past exams.

» As always, keep the TAs in the loop! Ask us
questions if you have them, feel free to stop by
office hours to discuss solutions, etc.

Outline for Today

 The Big Picture

- Where have we been? Why did it all matter?
- Where to Go from Here

- What’s next in CS theory?
 Your Questions

- What do you want to know?
 Final Thoughts!

The Big Picture

Take a minute to reflect on your journey.

Set Theory
Power Sets
Cantor’s Theorem
Direct Proofs
Parity
Proof by Contrapositive
Proof by Contradiction
Modular Congruence
Propositional Logic
First-Order Logic
Logic Translations
Logical Negations
Propositional Completeness
Vacuous Truths
Perfect Squares
Triangular Numbers
Tournaments
Functions
Injections
Surjections
Involutions
Monotone Functions
Minkowski Sums
Bijections

Graphs
Connectivity
Independent Sets
Vertex Covers
Trees
Bipartite Graphs
The Pigeonhole Principle
Ramsey Theory
Mathematical Induction
Complete Induction
The Spanning Tree Protocol
Formal Languages
DFAs
Regular Languages
Closure Properties
NFAs
Subset Construction
Kleene Closures
Error-Correcting Codes
Regular Expressions
State Elimination
Monoids
Distinguishability

Myhill-Nerode Theorem
Nonregular Languages
Context-Free Grammars
Fixed Point Theorems
Turing Machines
Church-Turing Thesis
TM Encodings
Universal Turing Machines
Self-Reference
Decidability
Recognizability
Self-Defeating Objects
Undecidable Problems
The Halting Problem
Verifiers
Diagonalization Language
R and RE
co-RE
Complexity Class P
Complexity Class NP
P = NP Problem
Polynomial-Time Reducibility
NP-Completeness

You’'ve done more than just check
a bunch of boxes off a list.

You've given yourself the foundation
to tackle problems from all over
computer science.

PRPs and PRFs ‘F"""' 05255I

 Pseudo Random Function (PRF) defined over (K,X,Y):
F: Kx X =2 Y

such that exists “efficient” algorithm to evaluate F(k,x)

Functions befween
sefst K x X is the
set of all pairs made
from K and X,

* Pseudo Random Permutation (PRP)
E: KxX —> X

such that:
(=

“eﬁicient”}lgorithm to evaluate E(k,x)

ction E(Kk,-) is [one-to-one}«\
“efficient” inversion algorithm
Injectivity:

Definifions in
ferms of
ethiciency!

| Strong triadic closure] ‘ From CS124 I
A

If a node Q has two strong tjes to nodes Y and Z, there is an edge between Y and Z
\
f s (6w — ((o———
New definifions
What do graphs
. . W on graphs:
with these o
properties look
like ?

Transtorm some
object to make it
closed under
some operafion:

From CS124

Tokenization in NLTK

Bird, Loper and Klein (2009), Natural Language Processing with Python. O’Reilly

>>> text = ’That U.S.A. poster-print costs $12.40...°
>>>/ﬁittern — B i # set flaa\to allow verbose regexps

([A-Z]\.)+ # abbreviatjions, e.g. U.S.A.
| \w+(-\w+)* # words with optional internal hyphens
| \$?2\d+(\.\d+)?%? # currency land percentages, e.g. $12.40, 82%
BRGT.T # ellipsis
| [1L.,;"’?20:-_°] # these ifj separate tokens; includes], [

AT

>>> nltk.regexp_tokiize(text, pattern)

[’That’, ’U.S.A.’, ’'pRoster-print’, ’costs’, ’$12.40°, ’...’]

‘\\\\\\5_____ 1t's a big

regex!

Describing the
world in sef
Theory!

‘ From CS237A I
Plar

-(Let R(q) € W denote set of points in the world occupied by robot\

when in configuration g
Robot in collision e R(g) N0 # @
«_ Accordingly, free space is defined as: C¢.. = {q € C|R(q) N 0 = 0},

r
L

pace

~

Path planning problem in C-space: compute a continuous path:
- 7:[0,1] = Cpree, with 7(0) = g; and 7(1) = gg

S

—

Model paths
as tunctions:

I1t's a CFa:

S-E

E-T;

T - int T

N E

o ® _
S—--E — ™1 — int
E--T;

Start"‘E—>-T+E

T—-int | E-T-;
T (E) EolewlE

\

CFa:!

I1's an automaton
derived from a

From CS143

ing| | — (E)
E—>-T,
E—--T+E

- T —-int
T—-(E)

(

Search problems ‘From cS221 I

P Definition: search problem

@tates: the set of states)

Sitart € States: starting state
Actions(s): possible actions from state s

Succ(s, a,): where we end up if take action g In state s
Cost(s, a): cost for taking action a in state s

JsEnd(s): whether at end Y
» Succ(s,a) = T'(s,a, 3’;\
« Cost(s,a) = Reward(s,a,s’) \

It's a
CS221 / Autumn 2018 / Liang DFA !

From CS243
IT. Transfer Functions

« A family of transfer functions F
 Basic Properties /: V> V
(")
— Has an identity function
« 3fsuch that AXx) = x, for all x.

— Closed under composition
« if A,keF, fief,e F
\- y,

>

N
11s functions
with specific
properTies!

C5243: Foundation of Data Flow 17 M. Lam

pronounced “big-oh of ...” or sometimes “oh of ...” From CS161
/

O(...) means an upper boun

e Let T(n), g(n) be functions of positive integers.
* Think of T(n) as being a runtime: positive and increasing in n.

 We say “T(n) is O(g(n))” if g(n) grows at least as fast as
T(n) as n gets large.

1 It's FOL and
[]
Formally, functions:

" T(n) = O(g(n)))
=

dc,ng > 0 s.t. Vn = n,,

 0=T(n)<c-gn)

‘ From CS224W I

f Graph G(V, E) has expansion a: if V'S c V-
V\S])

»

g # of edges leaving S = a- min(|S

Or equivalently:
#edges leaving §
First—order

en(| S [,|V\S
(l | | D definitions on
Vs graphs!

Sef difference
and cardinality:

From CS242

Typed lambda calculus

To understand the formal concept of a type system, we’re going to extend our lambda calculus from last week
(henceforth the “untyped” lambda calculus) with a notion of types (the “simply typed” lambda calculus). Here’s the

essentials of the language:
/ Type 7 :: int integer \

| =T function
Expression e :: o variable
n integer

e1 P ey binary operation l \
A(x:7)

. e function

€1 €2 application IT's a

CFa!
\Binop@::: + =%/ /

First, we introduce a language of types, indicated by the variable tau (7). A type is either an integer, or a function from
an input type 7; to an output type 75. Then we extend our untyped lambda calculus with the same arithmetic language

from the first lecture (numbers and binary operators)*. Usage of the language looks similar to before:

From CS166

Definitions
in terms ot
strings!

he Anatomy of a Suffix Tree

fA branching word iD ()
\‘ T$ is a string w such | §

that there are
characters a # b 0 $
where wa and wb are
\Substrings of T$.)
« Edge case: the empty
string is always
considered branching.

m

:,.--'
P

m wun

@mmw:

“* W O M WM O O

Vro VS MDW0NSoDO
ol
@mmm:

“*® 0 O

« Theorem: The suffix
tree for a string T has @
an internal node for a
string w if and only if
w 1s a branching word nonsenses$

in I'$. 012345678

"
|

Q

Finite State Machines
From CS144
event causing state transition
actions taken on state transition
— e T —

event
actions

e Represent protocols using state machines

- Sender and receiver each have a state | 11's a generalizatior
ot DFAs!

- Start in some initial state

- Events cause each side to select a state transition

e Transition specifies action taken
- Specified as events/actions
- E.g., software calls send/put packet on network

- E.g., packet arrives/send acknowledgment

From CS168

Reducibility:

Bv_definitiof. we need to_output v if and onlv if
y € S. That i, answering membership queries reduces to solving the Heavy Hitters problem.

BYthe“memb D Propicn We 111ca T TASK O PTCPTOCCSSITIE & SCt S L0 alISWeT (UCTIC

? O

of the form “is y € S”7 (A hash table is the most common solution to this problem.) It is
intuitive that vou cannot correctly answer all membership queries for a set S without storing

S (thereby using linear, rather than constant, space) — if you throw some of S out, you
might get a query asking about the part you threw out, and you won't know the answer.
It’s not too hard to make this idea precise using the Pigeonhole Principle.®

A

—
A Myhill—
Nerode—style
argumenT:

‘ From CS154 I

Kolmogorov Complexity (1960’s)

Definition: The shortest description of x, denoted as
d(x), is the lexicographically shortest string <M, w»>
such that M(w) halts with only x on its tape.

Definition: The Kolmogorov complexity of x, denoted

as K(x), is |[d(x)]. Using Turing

machines To define
intrinsic informafion
confent:

‘ From CS246 I

Suppose we are given a set of documents D

Each document d covers a set X4 of
words/topics/named entities W

For a set of documents A <D we define

4)
F) = || xe T
_ deA y
Goal: We want to Functions, set
union, and set
ImMax F(A) cardinalify:

|A|<k
Note: F(A) is a set function: F(4): Sets - N

From CS257

Negation normal form (NNF)

e Only logical connectives: A, vV, and -.

e - only appear in literals

Atom := T | L | Variable

. -p A q is in NNF, but -(pV g) is not in NNF
Literal := Atom | ~Atom
Formula := Literal | Formula v Formula | Formula A Formula

Every wff o (not containing «<>) can be transformed into an equivalent NNF o' with linear
increase in the size (i.e., # of symbols) of the formula:

e Rewrite »: (a1 - az) < (a1 vV ay) e Rewrite double negations:

e Apply De Morgan’s rules: Q) < Qg

- (a1 Var): ~(arvVan) e (magA-ay) * TS

- s(arAa): s(erAhap) o (ma1V-a) e -l < T

Question: what if the original formula contains <7

I1t's CFGs over
propositional
formulast

(6}51 = (12) A (O{l = 052) A (lez - Cl’l)

‘ From CS250 I
Alphabets: I
@ FORMAL DEFINITIONS

LA[Z. begné faite <& \etvwo\oeaniﬁfeﬁen

DEF‘, A e C of BUCKEENGFH—vc—ove

. C i
an ALPRARET 2, is a fsulset C -Z . Sonctipes T Wil ay
An eavant ce C s ca ~|m8gu\ instead of
“blodc\era% :

Languages!

You've given yourself the foundation
to tackle problems from all over
computer science.

There’s so much more to explore.
Where should you go next?

Next In Theoryland

 CS154: Introduction to the Theory of Computation

« The “spiritual sequel” to CS103. If you liked the second half
of this course, take it!

* CS161: Design and Analysis of Algorithms

* A natural next course in CS theory, focusing on the design of
efficient algorithms. (Super helpful for job interviews!)

 Phil 151 / 152: Metalogic; Computability and Logic

 What does self-reference look like in logic itself? Why is it
related to R and RE?

 Proof-Based Math Classes

« Math 107 (Graph Theory), Math 108 (Combinatorics), Math
113 (Linear Algebra), Math 161 (Set Theory), Math 120
(Modern Algebra), Math 152 (Number Theory), ...

Next in Applications

« CS143: Compilers

 See automata, CFGs, and formal proofs come to life.
(Requires CS107.)

« CS257: Introduction to Automated Reasoning

 See how to automate formal proofs, play around with SAT
and propositional logic, etc.

« CS250: Algebraic error-correcting codes

« Full of surprising applications and a great place to put
your Theoryland skills to use. (Requires CS109.)

« CS255: Introduction to Cryptography

* One of the major gifts of Theoryland to the real world, and
more important / interesting than even. (Requires CS109.)

The CS Theory Group

« Stanford’s has a world-class theory group in the CS
department doing research in cryptography, error-
correcting codes, algorithms, machine learning,
complexity theory, algorithmic fairness, etc.

 The faculty are super approachable and down-to-
earth. The theory group also has a stellar student-
to-faculty ratio (something like 6:1 undergrads to

professors).

 The group holds weekly Thursday lunches and
“Theory Tea” events. Interested in learning more?
Join their mailing list!

https://mailman.stanford.edu/mailman/listinfo/theory-seminar

Your Questions

What do you want to know?

Final Thoughts

A Huge Round of Thanks!

Your skills are rare.
Your skills are powerful.
Best of luck wherever they take you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 43

